Fata de articolul anterior (Termostat cu 2 praguri de temperatura pe afisaj LED), de data aceasta am modificat sketch-urile sa am un termostat clasic, cu temperatura reglata si, in plus, sa pot regla histerezisul.
- temperatura masurata mai mica decat cea reglata:
- temperata reglata:
- histerezis:
- temperatura masurata mai mare decat cea reglata:
- temperatura masurata este in domeniul dorit:
Schema este aceeasi:
Sketch-ul folosit este:
// http://nicuflorica.blogspot.ro/2013/07/afisaje-led-cu-7-segmente-si-arduino-ii.html
/*
6-13-2011
Spark Fun Electronics 2011
Nathan Seidle
This code is public domain but you buy me a beer if you use this and we meet
someday (Beerware license).
4 digit 7 segment display:
http://www.sparkfun.com/products/9483
Datasheet:
http://www.sparkfun.com/datasheets/Components/LED/7-Segment/YSD-439AR6B-35.pdf
This is an example of how to drive a 7 segment LED display from an ATmega
without the use of current limiting resistors. This technique is very common
but requires some knowledge of electronics - you do run the risk of dumping
too much current through the segments and burning out parts of the display.
If you use the stock code you should be ok, but be careful editing the
brightness values.
This code should work with all colors (red, blue, yellow, green) but the
brightness will vary from one color to the next because the forward voltage
drop of each color is different. This code was written and calibrated for the
red color.
This code will work with most Arduinos but you may want to re-route some of
the pins.
7 segments
4 digits
1 colon
=
12 pins required for full control
*/
// modified connexion by niq_ro from http://nicuflorica.blogspot.com
// for my Luckylight KW4-563ASA
// dataseet: http://www.tme.eu/ro/Document/dfc2efde2e22005fd28615e298ea2655/KW4-563XSA.pdf
byte digit1 = 11; //PWM Display pin 12 (digit1 is common anonds A1 from right side)
byte digit2 = 10; //PWM Display pin 9 (digit2 is common A2)
byte digit3 = 9; //PWM Display pin 8 (digit3 is common anods A3)
byte digit4 = 6; //PWM Display pin 6 (digit4 is common anods, from left side)
//Pin mapping from Arduino to the ATmega DIP28 if you need it
// http://www.arduino.cc/en/Hacking/PinMapping
byte segA = 2; //Display pin 11
byte segB = 3; //Display pin 7
byte segC = 4; //Display pin 4
byte segD = 5; //Display pin 2
byte segE = 12; //Display pin 1
byte segF = 7; //Display pin 10
byte segG = 8; //Display pin 5
byte dP = 13; // decimal point
#define LMPIN A0 // what pin we're LM35 is connected
#define BUT1 A1 // - switch
#define BUT2 A2 // + switch
#define BUT3 A3 // MENU switch
#define RECE A4 // output for lower temperature
#define CALD A5 // output for upper temperature
#define BINE A6 // output for ok temperature
int tset = 240; // temperature set (x10)
int dt = 5; // dt temperature
byte meniu = 0; // if MENIU = 0 is clasical
// if MENIU = 1 is for temperature set
// if MENIU = 2 is for dt temperature
float t, t0, t2, k;
void setup() {
analogReference(INTERNAL); // for Uno (1,1V)
//analogReference(INTERNAL1V1); // for Mega (1,1V)
pinMode(segA, OUTPUT);
pinMode(segB, OUTPUT);
pinMode(segC, OUTPUT);
pinMode(segD, OUTPUT);
pinMode(segE, OUTPUT);
pinMode(segF, OUTPUT);
pinMode(segG, OUTPUT);
pinMode(digit1, OUTPUT);
pinMode(digit2, OUTPUT);
pinMode(digit3, OUTPUT);
pinMode(digit4, OUTPUT);
pinMode(dP, OUTPUT);
pinMode(BUT1, INPUT);
pinMode(BUT2, INPUT);
pinMode(BUT3, INPUT);
pinMode(RECE, OUTPUT);
pinMode(CALD, OUTPUT);
pinMode(BINE, OUTPUT);
digitalWrite(BUT1, HIGH); // pull-ups on
digitalWrite(BUT2, HIGH);
digitalWrite(BUT3, HIGH);
digitalWrite(RECE, LOW);
digitalWrite(CALD, LOW);
digitalWrite(BINE, LOW);
Serial.begin(9600);
Serial.println("test for niq_ro");
k = 0.86; // factor corectie citire la multiplexare
delay(100);
t = analogRead(A0);
t0 = t * 110 / 1023; // pentru referinta interna de 1,1V;
t2 = t0;
}
void loop() {
Serial.print("meniu = ");
Serial.println(meniu);
Serial.print("tset = ");
Serial.println(tset/10);
Serial.print("dt = ");
Serial.println(dt/10);
if (digitalRead(BUT3) == LOW)
{ meniu = meniu + 1;
delay(250);
}
if (meniu == 3) meniu = 0;
if (millis() < 2000) citire();
// t = analogRead(LMPIN);
// t0 = t *500 / 1023;
leduri();
Serial.print(t);
Serial.print("/1023 --> ");
Serial.print("t = ");
Serial.println(t0);
//displayNumber(t0*10);
if (meniu == 0) {
int numara = 0;
while (meniu == 0) {
numara = numara + 1;
if (numara == 1000)
{
// float t = analogRead(LMPIN);
// float t0 = t *500 / 1023;
citire();
t0 = (t0 + t2) /2;
leduri();
// delay(5);
numara = 0;
Serial.print("t = ");
Serial.println(t0);
// displayNumber(t0*10); // this is number to diplay
}
te(t0*10); // this is number to diplay
t2 = t0;
if (digitalRead(BUT3) == LOW)
{ meniu = 1;
delay(250);
}
//Serial.print("t = ");
//Serial.println(t0);
//delay(5);
}
delay(5);
}
if (meniu == 1) {
while (meniu == 1) {
// minim(tset/10); // this is number to diplay
teset(tset);
if (digitalRead(BUT1) == LOW)
{ tset = tset - 1;
delay(250);
}
if (digitalRead(BUT2) == LOW)
{ tset = tset + 1;
delay(250);
}
if (digitalRead(BUT3) == LOW)
{ meniu = 2;
delay(250);
}
// delay(15);
}
Serial.print("tset = ");
Serial.println(tset/10);
delay (100);
}
if (meniu == 2) {
// if (tmax <= tmin) tmax = tmin + 10;
while (meniu ==2) {
// maxim(dt/10); // this is number to diplay
dete(dt); // this is number to diplay
if (digitalRead(BUT1) == LOW)
{ dt = dt - 1;
delay(250);
}
if (digitalRead(BUT2) == LOW)
{ dt = dt + 1;
delay(250);
}
if (digitalRead(BUT3) == LOW)
{ meniu = 0;
delay(250);
}
// delay(15);
if (dt < 1) dt = 1;
}
Serial.print("dt = ");
Serial.println(dt/10);
delay(100);
}
}
//Given a number, we display 10:22
//After running through the 4 numbers, the display is left turned off
//Display brightness
//Each digit is on for a certain amount of microseconds
//Then it is off until we have reached a total of 20ms for the function call
//Let's assume each digit is on for 1000us
//Each digit is on for 1ms, there are 4 digits, so the display is off for 16ms.
//That's a ratio of 1ms to 16ms or 6.25% on time (PWM).
//Let's define a variable called brightness that varies from:
//5000 blindingly bright (15.7mA current draw per digit)
//2000 shockingly bright (11.4mA current draw per digit)
//1000 pretty bright (5.9mA)
//500 normal (3mA)
//200 dim but readable (1.4mA)
//50 dim but readable (0.56mA)
//5 dim but readable (0.31mA)
//1 dim but readable in dark (0.28mA)
void dete(int toDisplay) {
#define DISPLAY_BRIGHTNESS 750
#define DIGIT_ON HIGH
#define DIGIT_OFF LOW
for(int digit = 4 ; digit > 0 ; digit--) {
//Turn on a digit for a short amount of time
switch(digit) {
case 1:
digitalWrite(digit1, DIGIT_ON);
lightNumber(15); // display degree symbol
delayMicroseconds(DISPLAY_BRIGHTNESS);
break;
case 2:
digitalWrite(digit2, DIGIT_ON);
digitalWrite(13, LOW);
lightNumber(toDisplay % 10);
toDisplay /= 10;
delayMicroseconds(DISPLAY_BRIGHTNESS);
break;
case 3:
digitalWrite(digit3, DIGIT_ON);
// digitalWrite(13, HIGH);
// digitalWrite(13, LOW);
lightNumber(toDisplay % 10);
toDisplay /= 10;
delayMicroseconds(DISPLAY_BRIGHTNESS);
break;
case 4:
digitalWrite(digit4, DIGIT_ON);
lightNumber(12); // display C letter
delayMicroseconds(DISPLAY_BRIGHTNESS);
break;
}
//Turn off all segments
lightNumber(10);
//Turn off all digits
digitalWrite(digit1, DIGIT_OFF);
digitalWrite(digit2, DIGIT_OFF);
digitalWrite(digit3, DIGIT_OFF);
digitalWrite(digit4, DIGIT_OFF);
}
}
void te(int toDisplay) {
#define DISPLAY_BRIGHTNESS 500
#define DIGIT_ON HIGH
#define DIGIT_OFF LOW
for(int digit = 4 ; digit > 0 ; digit--) {
//Turn on a digit for a short amount of time
switch(digit) {
case 1:
digitalWrite(digit1, DIGIT_ON);
digitalWrite(13, HIGH);
lightNumber(toDisplay % 10);
toDisplay /= 10;
break;
case 2:
digitalWrite(digit2, DIGIT_ON);
digitalWrite(13, LOW);
lightNumber(toDisplay % 10);
toDisplay /= 10;
break;
case 3:
digitalWrite(digit3, DIGIT_ON);
digitalWrite(13, HIGH);
lightNumber(toDisplay % 10);
toDisplay /= 10;
break;
case 4:
digitalWrite(digit4, DIGIT_ON);
lightNumber(12); // display C letter
digitalWrite(13, HIGH);
break;
}
// lightNumber(toDisplay % 10);
// toDisplay /= 10;
delayMicroseconds(DISPLAY_BRIGHTNESS);
//Turn off all segments
lightNumber(10);
//Turn off all digits
digitalWrite(digit1, DIGIT_OFF);
digitalWrite(digit2, DIGIT_OFF);
digitalWrite(digit3, DIGIT_OFF);
digitalWrite(digit4, DIGIT_OFF);
}
}
//Given a number, turns on those segments
//If number == 10, then turn off number
void lightNumber(int numberToDisplay) {
#define SEGMENT_ON LOW
#define SEGMENT_OFF HIGH
switch (numberToDisplay){
case 0:
digitalWrite(segA, SEGMENT_ON);
digitalWrite(segB, SEGMENT_ON);
digitalWrite(segC, SEGMENT_ON);
digitalWrite(segD, SEGMENT_ON);
digitalWrite(segE, SEGMENT_ON);
digitalWrite(segF, SEGMENT_ON);
digitalWrite(segG, SEGMENT_OFF);
digitalWrite(13, SEGMENT_OFF);
break;
case 1:
digitalWrite(segA, SEGMENT_OFF);
digitalWrite(segB, SEGMENT_ON);
digitalWrite(segC, SEGMENT_ON);
digitalWrite(segD, SEGMENT_OFF);
digitalWrite(segE, SEGMENT_OFF);
digitalWrite(segF, SEGMENT_OFF);
digitalWrite(segG, SEGMENT_OFF);
digitalWrite(13, SEGMENT_OFF);
break;
case 2:
digitalWrite(segA, SEGMENT_ON);
digitalWrite(segB, SEGMENT_ON);
digitalWrite(segC, SEGMENT_OFF);
digitalWrite(segD, SEGMENT_ON);
digitalWrite(segE, SEGMENT_ON);
digitalWrite(segF, SEGMENT_OFF);
digitalWrite(segG, SEGMENT_ON);
digitalWrite(13, SEGMENT_OFF);
break;
case 3:
digitalWrite(segA, SEGMENT_ON);
digitalWrite(segB, SEGMENT_ON);
digitalWrite(segC, SEGMENT_ON);
digitalWrite(segD, SEGMENT_ON);
digitalWrite(segE, SEGMENT_OFF);
digitalWrite(segF, SEGMENT_OFF);
digitalWrite(segG, SEGMENT_ON);
digitalWrite(13, SEGMENT_OFF);
break;
case 4:
digitalWrite(segA, SEGMENT_OFF);
digitalWrite(segB, SEGMENT_ON);
digitalWrite(segC, SEGMENT_ON);
digitalWrite(segD, SEGMENT_OFF);
digitalWrite(segE, SEGMENT_OFF);
digitalWrite(segF, SEGMENT_ON);
digitalWrite(segG, SEGMENT_ON);
digitalWrite(13, SEGMENT_OFF);
break;
case 5:
digitalWrite(segA, SEGMENT_ON);
digitalWrite(segB, SEGMENT_OFF);
digitalWrite(segC, SEGMENT_ON);
digitalWrite(segD, SEGMENT_ON);
digitalWrite(segE, SEGMENT_OFF);
digitalWrite(segF, SEGMENT_ON);
digitalWrite(segG, SEGMENT_ON);
digitalWrite(13, SEGMENT_OFF);
break;
case 6:
digitalWrite(segA, SEGMENT_ON);
digitalWrite(segB, SEGMENT_OFF);
digitalWrite(segC, SEGMENT_ON);
digitalWrite(segD, SEGMENT_ON);
digitalWrite(segE, SEGMENT_ON);
digitalWrite(segF, SEGMENT_ON);
digitalWrite(segG, SEGMENT_ON);
digitalWrite(13, SEGMENT_OFF);
break;
case 7:
digitalWrite(segA, SEGMENT_ON);
digitalWrite(segB, SEGMENT_ON);
digitalWrite(segC, SEGMENT_ON);
digitalWrite(segD, SEGMENT_OFF);
digitalWrite(segE, SEGMENT_OFF);
digitalWrite(segF, SEGMENT_OFF);
digitalWrite(segG, SEGMENT_OFF);
digitalWrite(13, SEGMENT_OFF);
break;
case 8:
digitalWrite(segA, SEGMENT_ON);
digitalWrite(segB, SEGMENT_ON);
digitalWrite(segC, SEGMENT_ON);
digitalWrite(segD, SEGMENT_ON);
digitalWrite(segE, SEGMENT_ON);
digitalWrite(segF, SEGMENT_ON);
digitalWrite(segG, SEGMENT_ON);
digitalWrite(13, SEGMENT_OFF);
break;
case 9:
digitalWrite(segA, SEGMENT_ON);
digitalWrite(segB, SEGMENT_ON);
digitalWrite(segC, SEGMENT_ON);
digitalWrite(segD, SEGMENT_ON);
digitalWrite(segE, SEGMENT_OFF);
digitalWrite(segF, SEGMENT_ON);
digitalWrite(segG, SEGMENT_ON);
digitalWrite(13, SEGMENT_OFF);
break;
// all segment are ON
case 10:
digitalWrite(segA, SEGMENT_OFF);
digitalWrite(segB, SEGMENT_OFF);
digitalWrite(segC, SEGMENT_OFF);
digitalWrite(segD, SEGMENT_OFF);
digitalWrite(segE, SEGMENT_OFF);
digitalWrite(segF, SEGMENT_OFF);
digitalWrite(segG, SEGMENT_OFF);
digitalWrite(13, SEGMENT_OFF);
break;
// degree symbol made by niq_ro
case 11:
digitalWrite(segA, SEGMENT_ON);
digitalWrite(segB, SEGMENT_ON);
digitalWrite(segC, SEGMENT_OFF);
digitalWrite(segD, SEGMENT_OFF);
digitalWrite(segE, SEGMENT_OFF);
digitalWrite(segF, SEGMENT_ON);
digitalWrite(segG, SEGMENT_ON);
digitalWrite(13, SEGMENT_OFF);
break;
// C letter made by niq_ro
case 12:
digitalWrite(segA, SEGMENT_ON);
digitalWrite(segB, SEGMENT_OFF);
digitalWrite(segC, SEGMENT_OFF);
digitalWrite(segD, SEGMENT_ON);
digitalWrite(segE, SEGMENT_ON);
digitalWrite(segF, SEGMENT_ON);
digitalWrite(segG, SEGMENT_OFF);
digitalWrite(13, SEGMENT_OFF);
break;
// c letter made by niq_ro
case 13:
digitalWrite(segA, SEGMENT_ON);
digitalWrite(segB, SEGMENT_OFF);
digitalWrite(segC, SEGMENT_OFF);
digitalWrite(segD, SEGMENT_OFF);
digitalWrite(segE, SEGMENT_OFF);
digitalWrite(segF, SEGMENT_ON);
digitalWrite(segG, SEGMENT_ON);
digitalWrite(13, SEGMENT_OFF);
break;
case 14: // lower line (d segment)
digitalWrite(segA, SEGMENT_OFF);
digitalWrite(segB, SEGMENT_OFF);
digitalWrite(segC, SEGMENT_OFF);
digitalWrite(segD, SEGMENT_ON);
digitalWrite(segE, SEGMENT_OFF);
digitalWrite(segF, SEGMENT_OFF);
digitalWrite(segG, SEGMENT_OFF);
digitalWrite(13, SEGMENT_OFF);
break;
case 15: // upper line (a segment)
digitalWrite(segA, SEGMENT_ON);
digitalWrite(segB, SEGMENT_OFF);
digitalWrite(segC, SEGMENT_OFF);
digitalWrite(segD, SEGMENT_OFF);
digitalWrite(segE, SEGMENT_OFF);
digitalWrite(segF, SEGMENT_OFF);
digitalWrite(segG, SEGMENT_OFF);
digitalWrite(13, SEGMENT_OFF);
break;
}
}
void leduri() {
digitalWrite(CALD, LOW);
digitalWrite(RECE, LOW);
digitalWrite(BINE, LOW);
if ( t0*10 < tset )
{ digitalWrite(RECE, HIGH);
digitalWrite(CALD, LOW);
digitalWrite(BINE, LOW);
}
if ( t0*10 > tset + dt )
{ digitalWrite(CALD, HIGH);
digitalWrite(RECE, LOW);
digitalWrite(BINE, LOW);
}
if (( t0*10 <= tset+dt ) && ( t0*10 >= tset ))
{ digitalWrite(CALD, LOW);
digitalWrite(RECE, LOW);
digitalWrite(BINE, HIGH);
}
}
void teset(int toDisplay) {
#define DISPLAY_BRIGHTNESS 500
#define DIGIT_ON HIGH
#define DIGIT_OFF LOW
for(int digit = 4 ; digit > 0 ; digit--) {
//Turn on a digit for a short amount of time
switch(digit) {
case 1:
digitalWrite(digit1, DIGIT_ON);
digitalWrite(13, HIGH);
lightNumber(toDisplay % 10);
toDisplay /= 10;
break;
case 2:
digitalWrite(digit2, DIGIT_ON);
digitalWrite(13, LOW);
lightNumber(toDisplay % 10);
toDisplay /= 10;
break;
case 3:
digitalWrite(digit3, DIGIT_ON);
digitalWrite(13, HIGH);
lightNumber(toDisplay % 10);
toDisplay /= 10;
break;
case 4:
digitalWrite(digit4, DIGIT_ON);
lightNumber(13); // display C letter
digitalWrite(dP, HIGH);
break;
}
// lightNumber(toDisplay % 10);
// toDisplay /= 10;
delayMicroseconds(DISPLAY_BRIGHTNESS);
//Turn off all segments
lightNumber(10);
//Turn off all digits
digitalWrite(digit1, DIGIT_OFF);
digitalWrite(digit2, DIGIT_OFF);
digitalWrite(digit3, DIGIT_OFF);
digitalWrite(digit4, DIGIT_OFF);
}
}
float citire() {
t = analogRead(A0);
t0 = t * k *110 / 1023; // pentru referinta interna de 1,1V;
// t0 = t *500 / 1023;
return t0;
}
Ulterior, am pus si memorarea valorilor reglate, dupa cum se vede si in filmuletul Termostat cu Arduino (2)// http://nicuflorica.blogspot.ro/2013/07/afisaje-led-cu-7-segmente-si-arduino-ii.html
// http://nicuflorica.blogspot.ro/2015/05/termostat-cu-2-praguri-de-temperatura.html
/*
6-13-2011, Spark Fun Electronics 2011, Nathan Seidle
This code is public domain but you buy me a beer if you use this and we meet
someday (Beerware license).
4 digit 7 segment display:
http://www.sparkfun.com/products/9483
Datasheet:
http://www.sparkfun.com/datasheets/Components/LED/7-Segment/YSD-439AR6B-35.pdf
This is an example of how to drive a 7 segment LED display from an ATmega
without the use of current limiting resistors. This technique is very common
but requires some knowledge of electronics - you do run the risk of dumping
too much current through the segments and burning out parts of the display.
If you use the stock code you should be ok, but be careful editing the
brightness values.
This code should work with all colors (red, blue, yellow, green) but the
brightness will vary from one color to the next because the forward voltage
drop of each color is different. This code was written and calibrated for the
red color.
This code will work with most Arduinos but you may want to re-route some of
the pins.
7 segments
4 digits
1 colon
=
12 pins required for full control
*/
// modified connexion by niq_ro from http://nicuflorica.blogspot.com
// http://arduinotehniq.blogspot.com/
// for my Luckylight KW4-563ASA
// dataseet: http://www.tme.eu/ro/Document/dfc2efde2e22005fd28615e298ea2655/KW4-563XSA.pdf
byte digit1 = 11; //PWM Display pin 12 (digit1 is common anonds A1 from right side)
byte digit2 = 10; //PWM Display pin 9 (digit2 is common A2)
byte digit3 = 9; //PWM Display pin 8 (digit3 is common anods A3)
byte digit4 = 6; //PWM Display pin 6 (digit4 is common anods, from left side)
//Pin mapping from Arduino to the ATmega DIP28 if you need it
// http://www.arduino.cc/en/Hacking/PinMapping
byte segA = 2; //Display pin 11
byte segB = 3; //Display pin 7
byte segC = 4; //Display pin 4
byte segD = 5; //Display pin 2
byte segE = 12; //Display pin 1
byte segF = 7; //Display pin 10
byte segG = 8; //Display pin 5
byte dP = 13; // decimal point
#define LMPIN A0 // what pin we're LM35 is connected
#define BUT1 A1 // - switch
#define BUT2 A2 // + switch
#define BUT3 A3 // MENU switch
#define RECE A4 // output for lower temperature
#define CALD A5 // output for upper temperature
#define BINE A6 // output for ok temperature
//int tset = 240; // temperature set (x10)
//int dt = 5; // dt temperature
byte meniu = 0; // if MENIU = 0 is clasical
// if MENIU = 1 is for temperature set
// if MENIU = 2 is for dt temperature
float t, t0, t2, k;
int tset, tset1, tset2, dt;
// http://tronixstuff.com/2011/03/16/tutorial-your-arduinos-inbuilt-eeprom/
#include <EEPROM.h>
void setup() {
analogReference(INTERNAL); // for Uno (1,1V)
//analogReference(INTERNAL1V1); // for Mega (1,1V)
// just first time... after must put commnent (//)
// EEPROM.write(101,0);
// EEPROM.write(102,245);
// EEPROM.write(103,5);
tset1 = EEPROM.read(101);
tset2 = EEPROM.read(102);
tset = 256 * tset1 + tset2; // recover the number
dt = EEPROM.read(103);
pinMode(segA, OUTPUT);
pinMode(segB, OUTPUT);
pinMode(segC, OUTPUT);
pinMode(segD, OUTPUT);
pinMode(segE, OUTPUT);
pinMode(segF, OUTPUT);
pinMode(segG, OUTPUT);
pinMode(digit1, OUTPUT);
pinMode(digit2, OUTPUT);
pinMode(digit3, OUTPUT);
pinMode(digit4, OUTPUT);
pinMode(dP, OUTPUT);
pinMode(BUT1, INPUT);
pinMode(BUT2, INPUT);
pinMode(BUT3, INPUT);
pinMode(RECE, OUTPUT);
pinMode(CALD, OUTPUT);
pinMode(BINE, OUTPUT);
digitalWrite(BUT1, HIGH); // pull-ups on
digitalWrite(BUT2, HIGH);
digitalWrite(BUT3, HIGH);
digitalWrite(RECE, LOW);
digitalWrite(CALD, LOW);
digitalWrite(BINE, LOW);
Serial.begin(9600);
Serial.println("test for niq_ro");
k = 0.86; // factor corectie citire la multiplexare
delay(100);
t = analogRead(A0);
t0 = t * 110 / 1023; // pentru referinta interna de 1,1V;
t2 = t0;
}
void loop() {
Serial.print("meniu = ");
Serial.println(meniu);
Serial.print("tset = ");
Serial.println(tset/10);
Serial.print("dt = ");
Serial.println(dt/10);
if (digitalRead(BUT3) == LOW)
{ meniu = meniu + 1;
delay(250);
}
if (meniu == 3) meniu = 0;
//if (millis() < 2000) citire();
// t = analogRead(LMPIN);
// t0 = t *500 / 1023;
leduri();
Serial.print(t);
Serial.print("/1023 --> ");
Serial.print("t = ");
Serial.println(t0);
//displayNumber(t0*10);
if (meniu == 0) {
int numara = 0;
while (meniu == 0) {
numara = numara + 1;
if (numara == 1000)
{
// float t = analogRead(LMPIN);
// float t0 = t *500 / 1023;
citire();
t0 = (t0 + t2) /2;
leduri();
// delay(5);
numara = 0;
Serial.print("t = ");
Serial.println(t0);
// displayNumber(t0*10); // this is number to diplay
}
te(t0*10); // this is number to diplay
t2 = t0;
if (digitalRead(BUT3) == LOW)
{ meniu = 1;
delay(250);
}
//Serial.print("t = ");
//Serial.println(t0);
//delay(5);
}
delay(5);
}
if (meniu == 1) {
while (meniu == 1) {
// minim(tset/10); // this is number to diplay
teset(tset);
if (digitalRead(BUT1) == LOW)
{ tset = tset - 1;
delay(250);
}
if (digitalRead(BUT2) == LOW)
{ tset = tset + 1;
delay(250);
}
if (digitalRead(BUT3) == LOW)
{ meniu = 2;
delay(250);
}
// delay(15);
}
// scriu in memorie temperatura dorita
//tset1 = tset % 256;
//tset1 = tset /= 256;
// Serial.print("tset1z = ");
// Serial.println(tset1);
// Serial.print("tset2u = ");
// Serial.println(tset2);
tset1 = tset / 256;
tset2 = tset - tset1 * 256;
EEPROM.write(101, tset1); // partea intreaga
EEPROM.write(102, tset2); // rest
Serial.print("tset1z = ");
Serial.println(tset1);
Serial.print("tset2u = ");
Serial.println(tset2);
Serial.print("tset = ");
Serial.println(tset/10);
delay (100);
}
if (meniu == 2) {
// if (tmax <= tmin) tmax = tmin + 10;
while (meniu ==2) {
// maxim(dt/10); // this is number to diplay
dete(dt); // this is number to diplay
if (digitalRead(BUT1) == LOW)
{ dt = dt - 1;
delay(250);
}
if (digitalRead(BUT2) == LOW)
{ dt = dt + 1;
delay(250);
}
if (digitalRead(BUT3) == LOW)
{ meniu = 0;
delay(250);
}
// delay(15);
if (dt < 1) dt = 1;
}
EEPROM.write(103,dt);
Serial.print("dt = ");
Serial.println(dt/10);
delay(100);
}
}
//Given a number, we display 10:22
//After running through the 4 numbers, the display is left turned off
//Display brightness
//Each digit is on for a certain amount of microseconds
//Then it is off until we have reached a total of 20ms for the function call
//Let's assume each digit is on for 1000us
//Each digit is on for 1ms, there are 4 digits, so the display is off for 16ms.
//That's a ratio of 1ms to 16ms or 6.25% on time (PWM).
//Let's define a variable called brightness that varies from:
//5000 blindingly bright (15.7mA current draw per digit)
//2000 shockingly bright (11.4mA current draw per digit)
//1000 pretty bright (5.9mA)
//500 normal (3mA)
//200 dim but readable (1.4mA)
//50 dim but readable (0.56mA)
//5 dim but readable (0.31mA)
//1 dim but readable in dark (0.28mA)
void dete(int toDisplay) {
#define DISPLAY_BRIGHTNESS 750
#define DIGIT_ON HIGH
#define DIGIT_OFF LOW
for(int digit = 4 ; digit > 0 ; digit--) {
//Turn on a digit for a short amount of time
switch(digit) {
case 1:
digitalWrite(digit1, DIGIT_ON);
lightNumber(15); // display degree symbol
delayMicroseconds(DISPLAY_BRIGHTNESS);
break;
case 2:
digitalWrite(digit2, DIGIT_ON);
digitalWrite(13, LOW);
lightNumber(toDisplay % 10);
toDisplay /= 10;
delayMicroseconds(DISPLAY_BRIGHTNESS);
break;
case 3:
digitalWrite(digit3, DIGIT_ON);
// digitalWrite(13, HIGH);
// digitalWrite(13, LOW);
lightNumber(toDisplay % 10);
toDisplay /= 10;
delayMicroseconds(DISPLAY_BRIGHTNESS);
break;
case 4:
digitalWrite(digit4, DIGIT_ON);
lightNumber(12); // display C letter
delayMicroseconds(DISPLAY_BRIGHTNESS);
break;
}
//Turn off all segments
lightNumber(10);
//Turn off all digits
digitalWrite(digit1, DIGIT_OFF);
digitalWrite(digit2, DIGIT_OFF);
digitalWrite(digit3, DIGIT_OFF);
digitalWrite(digit4, DIGIT_OFF);
}
}
void te(int toDisplay) {
#define DISPLAY_BRIGHTNESS 500
#define DIGIT_ON HIGH
#define DIGIT_OFF LOW
for(int digit = 4 ; digit > 0 ; digit--) {
//Turn on a digit for a short amount of time
switch(digit) {
case 1:
digitalWrite(digit1, DIGIT_ON);
digitalWrite(13, HIGH);
lightNumber(toDisplay % 10);
toDisplay /= 10;
break;
case 2:
digitalWrite(digit2, DIGIT_ON);
digitalWrite(13, LOW);
lightNumber(toDisplay % 10);
toDisplay /= 10;
break;
case 3:
digitalWrite(digit3, DIGIT_ON);
digitalWrite(13, HIGH);
lightNumber(toDisplay % 10);
toDisplay /= 10;
break;
case 4:
digitalWrite(digit4, DIGIT_ON);
lightNumber(12); // display C letter
digitalWrite(13, HIGH);
break;
}
// lightNumber(toDisplay % 10);
// toDisplay /= 10;
delayMicroseconds(DISPLAY_BRIGHTNESS);
//Turn off all segments
lightNumber(10);
//Turn off all digits
digitalWrite(digit1, DIGIT_OFF);
digitalWrite(digit2, DIGIT_OFF);
digitalWrite(digit3, DIGIT_OFF);
digitalWrite(digit4, DIGIT_OFF);
}
}
//Given a number, turns on those segments
//If number == 10, then turn off number
void lightNumber(int numberToDisplay) {
#define SEGMENT_ON LOW
#define SEGMENT_OFF HIGH
switch (numberToDisplay){
case 0:
digitalWrite(segA, SEGMENT_ON);
digitalWrite(segB, SEGMENT_ON);
digitalWrite(segC, SEGMENT_ON);
digitalWrite(segD, SEGMENT_ON);
digitalWrite(segE, SEGMENT_ON);
digitalWrite(segF, SEGMENT_ON);
digitalWrite(segG, SEGMENT_OFF);
digitalWrite(13, SEGMENT_OFF);
break;
case 1:
digitalWrite(segA, SEGMENT_OFF);
digitalWrite(segB, SEGMENT_ON);
digitalWrite(segC, SEGMENT_ON);
digitalWrite(segD, SEGMENT_OFF);
digitalWrite(segE, SEGMENT_OFF);
digitalWrite(segF, SEGMENT_OFF);
digitalWrite(segG, SEGMENT_OFF);
digitalWrite(13, SEGMENT_OFF);
break;
case 2:
digitalWrite(segA, SEGMENT_ON);
digitalWrite(segB, SEGMENT_ON);
digitalWrite(segC, SEGMENT_OFF);
digitalWrite(segD, SEGMENT_ON);
digitalWrite(segE, SEGMENT_ON);
digitalWrite(segF, SEGMENT_OFF);
digitalWrite(segG, SEGMENT_ON);
digitalWrite(13, SEGMENT_OFF);
break;
case 3:
digitalWrite(segA, SEGMENT_ON);
digitalWrite(segB, SEGMENT_ON);
digitalWrite(segC, SEGMENT_ON);
digitalWrite(segD, SEGMENT_ON);
digitalWrite(segE, SEGMENT_OFF);
digitalWrite(segF, SEGMENT_OFF);
digitalWrite(segG, SEGMENT_ON);
digitalWrite(13, SEGMENT_OFF);
break;
case 4:
digitalWrite(segA, SEGMENT_OFF);
digitalWrite(segB, SEGMENT_ON);
digitalWrite(segC, SEGMENT_ON);
digitalWrite(segD, SEGMENT_OFF);
digitalWrite(segE, SEGMENT_OFF);
digitalWrite(segF, SEGMENT_ON);
digitalWrite(segG, SEGMENT_ON);
digitalWrite(13, SEGMENT_OFF);
break;
case 5:
digitalWrite(segA, SEGMENT_ON);
digitalWrite(segB, SEGMENT_OFF);
digitalWrite(segC, SEGMENT_ON);
digitalWrite(segD, SEGMENT_ON);
digitalWrite(segE, SEGMENT_OFF);
digitalWrite(segF, SEGMENT_ON);
digitalWrite(segG, SEGMENT_ON);
digitalWrite(13, SEGMENT_OFF);
break;
case 6:
digitalWrite(segA, SEGMENT_ON);
digitalWrite(segB, SEGMENT_OFF);
digitalWrite(segC, SEGMENT_ON);
digitalWrite(segD, SEGMENT_ON);
digitalWrite(segE, SEGMENT_ON);
digitalWrite(segF, SEGMENT_ON);
digitalWrite(segG, SEGMENT_ON);
digitalWrite(13, SEGMENT_OFF);
break;
case 7:
digitalWrite(segA, SEGMENT_ON);
digitalWrite(segB, SEGMENT_ON);
digitalWrite(segC, SEGMENT_ON);
digitalWrite(segD, SEGMENT_OFF);
digitalWrite(segE, SEGMENT_OFF);
digitalWrite(segF, SEGMENT_OFF);
digitalWrite(segG, SEGMENT_OFF);
digitalWrite(13, SEGMENT_OFF);
break;
case 8:
digitalWrite(segA, SEGMENT_ON);
digitalWrite(segB, SEGMENT_ON);
digitalWrite(segC, SEGMENT_ON);
digitalWrite(segD, SEGMENT_ON);
digitalWrite(segE, SEGMENT_ON);
digitalWrite(segF, SEGMENT_ON);
digitalWrite(segG, SEGMENT_ON);
digitalWrite(13, SEGMENT_OFF);
break;
case 9:
digitalWrite(segA, SEGMENT_ON);
digitalWrite(segB, SEGMENT_ON);
digitalWrite(segC, SEGMENT_ON);
digitalWrite(segD, SEGMENT_ON);
digitalWrite(segE, SEGMENT_OFF);
digitalWrite(segF, SEGMENT_ON);
digitalWrite(segG, SEGMENT_ON);
digitalWrite(13, SEGMENT_OFF);
break;
// all segment are ON
case 10:
digitalWrite(segA, SEGMENT_OFF);
digitalWrite(segB, SEGMENT_OFF);
digitalWrite(segC, SEGMENT_OFF);
digitalWrite(segD, SEGMENT_OFF);
digitalWrite(segE, SEGMENT_OFF);
digitalWrite(segF, SEGMENT_OFF);
digitalWrite(segG, SEGMENT_OFF);
digitalWrite(13, SEGMENT_OFF);
break;
// degree symbol made by niq_ro
case 11:
digitalWrite(segA, SEGMENT_ON);
digitalWrite(segB, SEGMENT_ON);
digitalWrite(segC, SEGMENT_OFF);
digitalWrite(segD, SEGMENT_OFF);
digitalWrite(segE, SEGMENT_OFF);
digitalWrite(segF, SEGMENT_ON);
digitalWrite(segG, SEGMENT_ON);
digitalWrite(13, SEGMENT_OFF);
break;
// C letter made by niq_ro
case 12:
digitalWrite(segA, SEGMENT_ON);
digitalWrite(segB, SEGMENT_OFF);
digitalWrite(segC, SEGMENT_OFF);
digitalWrite(segD, SEGMENT_ON);
digitalWrite(segE, SEGMENT_ON);
digitalWrite(segF, SEGMENT_ON);
digitalWrite(segG, SEGMENT_OFF);
digitalWrite(13, SEGMENT_OFF);
break;
// c letter made by niq_ro
case 13:
digitalWrite(segA, SEGMENT_ON);
digitalWrite(segB, SEGMENT_OFF);
digitalWrite(segC, SEGMENT_OFF);
digitalWrite(segD, SEGMENT_OFF);
digitalWrite(segE, SEGMENT_OFF);
digitalWrite(segF, SEGMENT_ON);
digitalWrite(segG, SEGMENT_ON);
digitalWrite(13, SEGMENT_OFF);
break;
case 14: // lower line (d segment)
digitalWrite(segA, SEGMENT_OFF);
digitalWrite(segB, SEGMENT_OFF);
digitalWrite(segC, SEGMENT_OFF);
digitalWrite(segD, SEGMENT_ON);
digitalWrite(segE, SEGMENT_OFF);
digitalWrite(segF, SEGMENT_OFF);
digitalWrite(segG, SEGMENT_OFF);
digitalWrite(13, SEGMENT_OFF);
break;
case 15: // upper line (a segment)
digitalWrite(segA, SEGMENT_ON);
digitalWrite(segB, SEGMENT_OFF);
digitalWrite(segC, SEGMENT_OFF);
digitalWrite(segD, SEGMENT_OFF);
digitalWrite(segE, SEGMENT_OFF);
digitalWrite(segF, SEGMENT_OFF);
digitalWrite(segG, SEGMENT_OFF);
digitalWrite(13, SEGMENT_OFF);
break;
}
}
void leduri() {
digitalWrite(CALD, LOW);
digitalWrite(RECE, LOW);
digitalWrite(BINE, LOW);
if ( t0*10 < tset )
{ digitalWrite(RECE, HIGH);
digitalWrite(CALD, LOW);
digitalWrite(BINE, LOW);
}
if ( t0*10 > tset + dt )
{ digitalWrite(CALD, HIGH);
digitalWrite(RECE, LOW);
digitalWrite(BINE, LOW);
}
if (( t0*10 <= tset+dt ) && ( t0*10 >= tset ))
{ digitalWrite(CALD, LOW);
digitalWrite(RECE, LOW);
digitalWrite(BINE, HIGH);
}
}
void teset(int toDisplay) {
#define DISPLAY_BRIGHTNESS 500
#define DIGIT_ON HIGH
#define DIGIT_OFF LOW
for(int digit = 4 ; digit > 0 ; digit--) {
//Turn on a digit for a short amount of time
switch(digit) {
case 1:
digitalWrite(digit1, DIGIT_ON);
digitalWrite(13, HIGH);
lightNumber(toDisplay % 10);
toDisplay /= 10;
break;
case 2:
digitalWrite(digit2, DIGIT_ON);
digitalWrite(13, LOW);
lightNumber(toDisplay % 10);
toDisplay /= 10;
break;
case 3:
digitalWrite(digit3, DIGIT_ON);
digitalWrite(13, HIGH);
lightNumber(toDisplay % 10);
toDisplay /= 10;
break;
case 4:
digitalWrite(digit4, DIGIT_ON);
lightNumber(13); // display C letter
digitalWrite(dP, HIGH);
break;
}
// lightNumber(toDisplay % 10);
// toDisplay /= 10;
delayMicroseconds(DISPLAY_BRIGHTNESS);
//Turn off all segments
lightNumber(10);
//Turn off all digits
digitalWrite(digit1, DIGIT_OFF);
digitalWrite(digit2, DIGIT_OFF);
digitalWrite(digit3, DIGIT_OFF);
digitalWrite(digit4, DIGIT_OFF);
}
}
float citire() {
t = analogRead(A0);
t0 = t * k *110 / 1023; // pentru referinta interna de 1,1V;
// t0 = t *500 / 1023;
return t0;
}
Am facut si un filmulet in engleza, numit Arduino thermostat
PS: La prima incarcare a sketch-ului trebuie sa scriem niste valori apropiate de cele dorite in memoria interna a microcontrolerului:
apoi se anuleaza cele 3 linii (se "comenteaza") si se reincarca sketch-ul:
Testele au fost facute cu o placa Arduino Uno si vom gasi in sketch
dar functioneaza foarte bine si cu o placa Arduino Mega, trebuind anulata ("comentata") prima linie si activata cea de-a doua:
Daca se doreste conectarea unui releu (la iesirea unde este comectat LED-ul albastru), care sa comande pornirea unei centrale sau a unei rezistente de incalzire, subrutina leduri trebuie schimbata un pic:
void leduri() {
digitalWrite(CALD, LOW);
digitalWrite(RECE, LOW);
if ( t0*10 < tset )
{ digitalWrite(RECE, HIGH);
digitalWrite(CALD, LOW);
pornire = 1;
}
if ( t0*10 > tset + dt )
{ digitalWrite(CALD, HIGH);
digitalWrite(RECE, LOW);
pornire = 0;
}
if (( t0*10 <= tset+dt ) && ( t0*10 >= tset )) {
if (pornire == 1)
{ digitalWrite(CALD, LOW);
digitalWrite(RECE, HIGH);
}
if (pornire == 0)
{ digitalWrite(CALD, LOW);
digitalWrite(RECE, LOW);
}
}
}
si trebuie definita la inceputul sketch-ului variabila int pornire; iar la setup pornire = 0; !!!Puteti descarca sketch-ul cu modificari de la https://github.com/tehniq3 !
In filmuletul Termostat cu Arduino (3) se vede modul de functionare..
Niciun comentariu:
Trimiteți un comentariu