Pentru a vedeam cum lucreaza am folosit un sketch gasit la http://www.goodliffe.org.uk/arduino/rtc_ds3231.php, care prezinta data, ora si temperatura pe ecranul de monitorizare seriala, de asemenea, reglajul se face tot prin intermediul ecranului de monitorizare seriala, scriind un text de genul T1124154091014.
Schema de conectare este foarte simpla, conectandu-se alimentarea (5V si GND) si firele de comunicatie pe protocol i2c (SDA si SCL). Montajul cu o placa Arduino Mega si un modul de ceas cu DS3231 arata asa:
Pe ecranul de monotorizare seriala apare:
iar pentru a schimba ora/data:
Formatul de programare a orei si date este urmatorul de genul T0058113130515, care are urmatoarea semnificatie:
- 00: secundele (din 2 cifre: 00..59)
- 58: minutele (din 2 cifre: 00..59)
- 11: ora (din 2 cifre: 00..23)
- 3: numarul zilei din saptamana, in cazul meu, miercuri a 3-a zi din saptamana (o singura cifra: 1..7)
- 13: ziua: 1..31
- 05: luna: 1..12
- 15: ultimele 2 cifre din an: 00..99
Sketch-ul modificat de mine sa arata ziua in romana si dupa valoarea temperaturii grad Celsius este:
// original sketch from http://www.goodliffe.org.uk/arduino/rtc_ds3231.php
#include <Wire.h>
#define DS3231_I2C_ADDRESS 104
// SCL - pin A5
// SDA - pin A4
// To set the clock, run the sketch and use the serial monitor.
// Enter T1124154091014; the code will read this and set the clock. See the code for full details.
//
byte seconds, minutes, hours, day, date, month, year;
char weekDay[4];
byte tMSB, tLSB;
float temp3231;
void setup()
{
Wire.begin();
Serial.begin(9600);
}
void loop()
{
watchConsole();
get3231Date();
Serial.print(weekDay); Serial.print(", "); Serial.print(date, DEC); Serial.print("/"); Serial.print(month, DEC); Serial.print("/"); Serial.print(year, DEC); Serial.print(" - ");
Serial.print(hours, DEC); Serial.print(":");
if (minutes < 10){
Serial.print("0");
Serial.print(minutes, DEC);
}
else{
Serial.print(minutes, DEC);
}
Serial.print(":");
if (seconds < 10){
Serial.print("0");
Serial.print(seconds, DEC);
}
else{
Serial.print(seconds, DEC);
}
Serial.println(" ");
Serial.print(" Temp: "); Serial.print(get3231Temp());
Serial.println("^C ");
Serial.println(" _______________________");
Serial.println(" ");
delay(10000); //10 sec
}
// Convert normal decimal numbers to binary coded decimal
byte decToBcd(byte val)
{
return ( (val/10*16) + (val%10) );
}
void watchConsole()
{
if (Serial.available()) { // Look for char in serial queue and process if found
if (Serial.read() == 84) { //If command = "T" Set Date
set3231Date();
get3231Date();
Serial.println(" ");
}
}
}
void set3231Date()
{
//T(sec)(min)(hour)(dayOfWeek)(dayOfMonth)(month)(year)
//T(00-59)(00-59)(00-23)(1-7)(01-31)(01-12)(00-99)
//Example: 02-Feb-09 @ 19:57:11 for the 3rd day of the week -> T1157193020209
// T1124154091014
seconds = (byte) ((Serial.read() - 48) * 10 + (Serial.read() - 48)); // Use of (byte) type casting and ascii math to achieve result.
minutes = (byte) ((Serial.read() - 48) *10 + (Serial.read() - 48));
hours = (byte) ((Serial.read() - 48) *10 + (Serial.read() - 48));
day = (byte) (Serial.read() - 48);
date = (byte) ((Serial.read() - 48) *10 + (Serial.read() - 48));
month = (byte) ((Serial.read() - 48) *10 + (Serial.read() - 48));
year = (byte) ((Serial.read() - 48) *10 + (Serial.read() - 48));
Wire.beginTransmission(DS3231_I2C_ADDRESS);
Wire.write(0x00);
Wire.write(decToBcd(seconds));
Wire.write(decToBcd(minutes));
Wire.write(decToBcd(hours));
Wire.write(decToBcd(day));
Wire.write(decToBcd(date));
Wire.write(decToBcd(month));
Wire.write(decToBcd(year));
Wire.endTransmission();
}
void get3231Date()
{
// send request to receive data starting at register 0
Wire.beginTransmission(DS3231_I2C_ADDRESS); // 104 is DS3231 device address
Wire.write(0x00); // start at register 0
Wire.endTransmission();
Wire.requestFrom(DS3231_I2C_ADDRESS, 7); // request seven bytes
if(Wire.available()) {
seconds = Wire.read(); // get seconds
minutes = Wire.read(); // get minutes
hours = Wire.read(); // get hours
day = Wire.read();
date = Wire.read();
month = Wire.read(); //temp month
year = Wire.read();
seconds = (((seconds & B11110000)>>4)*10 + (seconds & B00001111)); // convert BCD to decimal
minutes = (((minutes & B11110000)>>4)*10 + (minutes & B00001111)); // convert BCD to decimal
hours = (((hours & B00110000)>>4)*10 + (hours & B00001111)); // convert BCD to decimal (assume 24 hour mode)
day = (day & B00000111); // 1-7
date = (((date & B00110000)>>4)*10 + (date & B00001111)); // 1-31
month = (((month & B00010000)>>4)*10 + (month & B00001111)); //msb7 is century overflow
year = (((year & B11110000)>>4)*10 + (year & B00001111));
}
else {
//oh noes, no data!
}
switch (day) {
case 1:
strcpy(weekDay, "Luni");
break;
case 2:
strcpy(weekDay, "Marti");
break;
case 3:
strcpy(weekDay, "Miercuri");
break;
case 4:
strcpy(weekDay, "Joi");
break;
case 5:
strcpy(weekDay, "Vineri");
break;
case 6:
strcpy(weekDay, "Sambata");
break;
case 7:
strcpy(weekDay, "Duminica");
break;
}
}
float get3231Temp()
{
//temp registers (11h-12h) get updated automatically every 64s
Wire.beginTransmission(DS3231_I2C_ADDRESS);
Wire.write(0x11);
Wire.endTransmission();
Wire.requestFrom(DS3231_I2C_ADDRESS, 2);
if(Wire.available()) {
tMSB = Wire.read(); //2's complement int portion
tLSB = Wire.read(); //fraction portion
temp3231 = (tMSB & B01111111); //do 2's math on Tmsb
temp3231 += ( (tLSB >> 6) * 0.25 ); //only care about bits 7 & 8
}
else {
//oh noes, no data!
}
return temp3231;
}
Am facut si un filmulet numit https://youtu.be/M8XoTKW9MJo: Am conectat si un afisaj LED cu cifre din 7 segmente la care am adaugat si un senzor de temperatura si umiditate DHT11 si am incarcat ultimul sketch prezentat in articolul de la http://nicuflorica.blogspot.ro/2013/07/afisaje-led-cu-7-segmente-si-arduino-ii.html
Schema de conectare este:
Sketch-ul mentionat este:
/*
6-13-2011
Spark Fun Electronics 2011
Nathan Seidle
This code is public domain but you buy me a beer if you use this and we meet
someday (Beerware license).
4 digit 7 segment display:
http://www.sparkfun.com/products/9483
Datasheet:
http://www.sparkfun.com/datasheets/Components/LED/7-Segment/YSD-439AR6B-35.pdf
This is an example of how to drive a 7 segment LED display from an ATmega
without the use of current limiting resistors. This technique is very common
but requires some knowledge of electronics - you do run the risk of dumping
too much current through the segments and burning out parts of the display.
If you use the stock code you should be ok, but be careful editing the
brightness values.
This code should work with all colors (red, blue, yellow, green) but the
brightness will vary from one color to the next because the forward voltage
drop of each color is different. This code was written and calibrated for the
red color.
This code will work with most Arduinos but you may want to re-route some of
the pins.
7 segments
4 digits
1 colon
=
12 pins required for full control
*/
// modified connexion by niq_ro from http://nicuflorica.blogspot.com
// for my Luckylight KW4-563ASA
// dataseet: http://www.tme.eu/ro/Document/dfc2efde2e22005fd28615e298ea2655/KW4-563XSA.pdf
int digit1 = 11; //PWM Display pin 12 (digit1 is common anonds A1 from right side)
int digit2 = 10; //PWM Display pin 9 (digit2 is common A2)
int digit3 = 9; //PWM Display pin 8 (digit3 is common anods A3)
int digit4 = 6; //PWM Display pin 6 (digit4 is common anods, from left side)
//Pin mapping from Arduino to the ATmega DIP28 if you need it
//http://www.arduino.cc/en/Hacking/PinMapping
int segA = 2; //Display pin 11
int segB = 3; //Display pin 7
int segC = 4; //Display pin 4
int segD = 5; //Display pin 2
int segE = 12; //Display pin 1
int segF = 7; //Display pin 10
int segG = 8; //Display pin 5
int segDP = 13; // Display pin 3
#include "DHT.h"
#define DHTPIN A2 // what pin we're connected to
#define DHTTYPE DHT11 // DHT 11
DHT dht(DHTPIN, DHTTYPE);
#include <Wire.h>
#include "RTClib.h"
RTC_DS1307 RTC;
// Date and time functions using a DS1307 RTC connected via I2C and Wire lib
// original sketck from http://learn.adafruit.com/ds1307-real-time-clock-breakout-board-kit/
// add part with SQW=1Hz from http://tronixstuff.wordpress.com/2010/10/20/tutorial-arduino-and-the-i2c-bus/
void setup() {
Wire.begin();
RTC.begin();
// RTC.adjust(DateTime(__DATE__, __TIME__));
// if you need set clock... just remove // from line above this
// part code for flashing LED
Wire.beginTransmission(0x68);
Wire.write(0x07); // move pointer to SQW address
// Wire.write(0x00); // turns the SQW pin off
Wire.write(0x10); // sends 0x10 (hex) 00010000 (binary) to control register - turns on square wave at 1Hz
// Wire.write(0x13); // sends 0x13 (hex) 00010011 (binary) 32kHz
Wire.endTransmission();
if (! RTC.isrunning()) {
Serial.println("RTC is NOT running!");
// following line sets the RTC to the date & time this sketch was compiled
RTC.adjust(DateTime(__DATE__, __TIME__));
}
dht.begin();
pinMode(segA, OUTPUT);
pinMode(segB, OUTPUT);
pinMode(segC, OUTPUT);
pinMode(segD, OUTPUT);
pinMode(segE, OUTPUT);
pinMode(segF, OUTPUT);
pinMode(segG, OUTPUT);
pinMode(segDP, OUTPUT);
pinMode(digit1, OUTPUT);
pinMode(digit2, OUTPUT);
pinMode(digit3, OUTPUT);
pinMode(digit4, OUTPUT);
// pinMode(13, OUTPUT);
Serial.begin(9600);
Serial.println("test for niq_ro");
}
void loop() {
digitalWrite(segDP, HIGH);
DateTime now = RTC.now();
int timp = now.hour()*100+now.minute();
// int timp = (now.minute(), DEC);
// displayNumber(12); // this is number to diplay
// int timp = 1234;
Serial.print(now.hour(), DEC);
Serial.print(":");
Serial.print(now.minute(), DEC);
Serial.print(" -> ");
Serial.print(timp);
Serial.println(" !");
int h = dht.readHumidity();
int t = dht.readTemperature();
for(int i = 1000 ; i >0 ; i--) {
displayNumber(t); // this is number to diplay
}
for(int i = 1000 ; i >0 ; i--) {
displayNumber1(h); // this is number to diplay
}
for(int i = 1000 ; i >0 ; i--) {
if (timp > 1000) displayNumber01(timp);
else displayNumber02(timp);
}
}
//Given a number, we display 10:22
//After running through the 4 numbers, the display is left turned off
//Display brightness
//Each digit is on for a certain amount of microseconds
//Then it is off until we have reached a total of 20ms for the function call
//Let's assume each digit is on for 1000us
//Each digit is on for 1ms, there are 4 digits, so the display is off for 16ms.
//That's a ratio of 1ms to 16ms or 6.25% on time (PWM).
//Let's define a variable called brightness that varies from:
//5000 blindingly bright (15.7mA current draw per digit)
//2000 shockingly bright (11.4mA current draw per digit)
//1000 pretty bright (5.9mA)
//500 normal (3mA)
//200 dim but readable (1.4mA)
//50 dim but readable (0.56mA)
//5 dim but readable (0.31mA)
//1 dim but readable in dark (0.28mA)
void displayNumber(int toDisplay) {
#define DISPLAY_BRIGHTNESS 500
#define DIGIT_ON HIGH
#define DIGIT_OFF LOW
for(int digit = 4 ; digit > 0 ; digit--) {
//Turn on a digit for a short amount of time
switch(digit) {
case 1:
digitalWrite(digit1, DIGIT_ON);
lightNumber(toDisplay % 10);
toDisplay /= 10;
delayMicroseconds(DISPLAY_BRIGHTNESS);
break;
case 2:
digitalWrite(digit2, DIGIT_ON);
lightNumber(toDisplay % 10);
toDisplay /= 10;
delayMicroseconds(DISPLAY_BRIGHTNESS);
break;
case 3:
digitalWrite(digit3, DIGIT_ON);
lightNumber(11); // display degree symbol
delayMicroseconds(DISPLAY_BRIGHTNESS);
break;
case 4:
digitalWrite(digit4, DIGIT_ON);
lightNumber(12); // display C letter
delayMicroseconds(DISPLAY_BRIGHTNESS);
break;
}
//Turn off all segments
lightNumber(10);
//Turn off all digits
digitalWrite(digit1, DIGIT_OFF);
digitalWrite(digit2, DIGIT_OFF);
digitalWrite(digit3, DIGIT_OFF);
digitalWrite(digit4, DIGIT_OFF);
}
}
void displayNumber1(int toDisplay) {
#define DISPLAY_BRIGHTNESS 500
#define DIGIT_ON HIGH
#define DIGIT_OFF LOW
for(int digit = 4 ; digit > 0 ; digit--) {
//Turn on a digit for a short amount of time
switch(digit) {
case 1:
digitalWrite(digit1, DIGIT_ON);
lightNumber(toDisplay % 10);
toDisplay /= 10;
delayMicroseconds(DISPLAY_BRIGHTNESS);
break;
case 2:
digitalWrite(digit2, DIGIT_ON);
lightNumber(toDisplay % 10);
toDisplay /= 10;
delayMicroseconds(DISPLAY_BRIGHTNESS);
break;
case 3:
digitalWrite(digit3, DIGIT_ON);
lightNumber(10); // display degree symbol
delayMicroseconds(DISPLAY_BRIGHTNESS);
break;
case 4:
digitalWrite(digit4, DIGIT_ON);
lightNumber(13); // display C letter
delayMicroseconds(DISPLAY_BRIGHTNESS);
break;
}
//Turn off all segments
lightNumber(10);
//Turn off all digits
digitalWrite(digit1, DIGIT_OFF);
digitalWrite(digit2, DIGIT_OFF);
digitalWrite(digit3, DIGIT_OFF);
digitalWrite(digit4, DIGIT_OFF);
}
}
void displayNumber01(int toDisplay) {
#define DISPLAY_BRIGHTNESS 500
#define DIGIT_ON HIGH
#define DIGIT_OFF LOW
for(int digit = 4 ; digit > 0 ; digit--) {
//Turn on a digit for a short amount of time
switch(digit) {
case 1:
digitalWrite(digit1, DIGIT_ON);
digitalWrite(segDP, HIGH);
break;
case 2:
digitalWrite(digit2, DIGIT_ON);
digitalWrite(segDP, LOW);
break;
case 3:
digitalWrite(digit3, DIGIT_ON);
digitalWrite(segDP, HIGH);
break;
case 4:
digitalWrite(digit4, DIGIT_ON);
digitalWrite(segDP, HIGH);
break;
}
lightNumber(toDisplay % 10);
toDisplay /= 10;
delayMicroseconds(DISPLAY_BRIGHTNESS);
//Turn off all segments
lightNumber(10);
//Turn off all digits
digitalWrite(digit1, DIGIT_OFF);
digitalWrite(digit2, DIGIT_OFF);
digitalWrite(digit3, DIGIT_OFF);
digitalWrite(digit4, DIGIT_OFF);
}
}
void displayNumber02(int toDisplay) {
#define DISPLAY_BRIGHTNESS 500
#define DIGIT_ON HIGH
#define DIGIT_OFF LOW
for(int digit = 4 ; digit > 0 ; digit--) {
//Turn on a digit for a short amount of time
switch(digit) {
case 1:
lightNumber(10);
digitalWrite(segDP, HIGH);
break;
case 2:
digitalWrite(digit2, DIGIT_ON);
digitalWrite(segDP, LOW);
break;
case 3:
digitalWrite(digit3, DIGIT_ON);
digitalWrite(segDP, HIGH);
break;
case 4:
digitalWrite(digit4, DIGIT_ON);
digitalWrite(segDP, HIGH);
break;
}
lightNumber(toDisplay % 10);
toDisplay /= 10;
delayMicroseconds(DISPLAY_BRIGHTNESS);
//Turn off all segments
lightNumber(10);
//Turn off all digits
digitalWrite(digit1, DIGIT_OFF);
digitalWrite(digit2, DIGIT_OFF);
digitalWrite(digit3, DIGIT_OFF);
digitalWrite(digit4, DIGIT_OFF);
}
}
//Given a number, turns on those segments
//If number == 10, then turn off number
void lightNumber(int numberToDisplay) {
#define SEGMENT_ON LOW
#define SEGMENT_OFF HIGH
switch (numberToDisplay){
case 0:
digitalWrite(segA, SEGMENT_ON);
digitalWrite(segB, SEGMENT_ON);
digitalWrite(segC, SEGMENT_ON);
digitalWrite(segD, SEGMENT_ON);
digitalWrite(segE, SEGMENT_ON);
digitalWrite(segF, SEGMENT_ON);
digitalWrite(segG, SEGMENT_OFF);
break;
case 1:
digitalWrite(segA, SEGMENT_OFF);
digitalWrite(segB, SEGMENT_ON);
digitalWrite(segC, SEGMENT_ON);
digitalWrite(segD, SEGMENT_OFF);
digitalWrite(segE, SEGMENT_OFF);
digitalWrite(segF, SEGMENT_OFF);
digitalWrite(segG, SEGMENT_OFF);
break;
case 2:
digitalWrite(segA, SEGMENT_ON);
digitalWrite(segB, SEGMENT_ON);
digitalWrite(segC, SEGMENT_OFF);
digitalWrite(segD, SEGMENT_ON);
digitalWrite(segE, SEGMENT_ON);
digitalWrite(segF, SEGMENT_OFF);
digitalWrite(segG, SEGMENT_ON);
break;
case 3:
digitalWrite(segA, SEGMENT_ON);
digitalWrite(segB, SEGMENT_ON);
digitalWrite(segC, SEGMENT_ON);
digitalWrite(segD, SEGMENT_ON);
digitalWrite(segE, SEGMENT_OFF);
digitalWrite(segF, SEGMENT_OFF);
digitalWrite(segG, SEGMENT_ON);
break;
case 4:
digitalWrite(segA, SEGMENT_OFF);
digitalWrite(segB, SEGMENT_ON);
digitalWrite(segC, SEGMENT_ON);
digitalWrite(segD, SEGMENT_OFF);
digitalWrite(segE, SEGMENT_OFF);
digitalWrite(segF, SEGMENT_ON);
digitalWrite(segG, SEGMENT_ON);
break;
case 5:
digitalWrite(segA, SEGMENT_ON);
digitalWrite(segB, SEGMENT_OFF);
digitalWrite(segC, SEGMENT_ON);
digitalWrite(segD, SEGMENT_ON);
digitalWrite(segE, SEGMENT_OFF);
digitalWrite(segF, SEGMENT_ON);
digitalWrite(segG, SEGMENT_ON);
break;
case 6:
digitalWrite(segA, SEGMENT_ON);
digitalWrite(segB, SEGMENT_OFF);
digitalWrite(segC, SEGMENT_ON);
digitalWrite(segD, SEGMENT_ON);
digitalWrite(segE, SEGMENT_ON);
digitalWrite(segF, SEGMENT_ON);
digitalWrite(segG, SEGMENT_ON);
break;
case 7:
digitalWrite(segA, SEGMENT_ON);
digitalWrite(segB, SEGMENT_ON);
digitalWrite(segC, SEGMENT_ON);
digitalWrite(segD, SEGMENT_OFF);
digitalWrite(segE, SEGMENT_OFF);
digitalWrite(segF, SEGMENT_OFF);
digitalWrite(segG, SEGMENT_OFF);
break;
case 8:
digitalWrite(segA, SEGMENT_ON);
digitalWrite(segB, SEGMENT_ON);
digitalWrite(segC, SEGMENT_ON);
digitalWrite(segD, SEGMENT_ON);
digitalWrite(segE, SEGMENT_ON);
digitalWrite(segF, SEGMENT_ON);
digitalWrite(segG, SEGMENT_ON);
break;
case 9:
digitalWrite(segA, SEGMENT_ON);
digitalWrite(segB, SEGMENT_ON);
digitalWrite(segC, SEGMENT_ON);
digitalWrite(segD, SEGMENT_ON);
digitalWrite(segE, SEGMENT_OFF);
digitalWrite(segF, SEGMENT_ON);
digitalWrite(segG, SEGMENT_ON);
break;
// all segment are ON
case 10:
digitalWrite(segA, SEGMENT_OFF);
digitalWrite(segB, SEGMENT_OFF);
digitalWrite(segC, SEGMENT_OFF);
digitalWrite(segD, SEGMENT_OFF);
digitalWrite(segE, SEGMENT_OFF);
digitalWrite(segF, SEGMENT_OFF);
digitalWrite(segG, SEGMENT_OFF);
break;
// degree symbol made by niq_ro
case 11:
digitalWrite(segA, SEGMENT_ON);
digitalWrite(segB, SEGMENT_ON);
digitalWrite(segC, SEGMENT_OFF);
digitalWrite(segD, SEGMENT_OFF);
digitalWrite(segE, SEGMENT_OFF);
digitalWrite(segF, SEGMENT_ON);
digitalWrite(segG, SEGMENT_ON);
break;
// C letter made by niq_ro
case 12:
digitalWrite(segA, SEGMENT_ON);
digitalWrite(segB, SEGMENT_OFF);
digitalWrite(segC, SEGMENT_OFF);
digitalWrite(segD, SEGMENT_ON);
digitalWrite(segE, SEGMENT_ON);
digitalWrite(segF, SEGMENT_ON);
digitalWrite(segG, SEGMENT_OFF);
break;
// H letter made by niq_ro
case 13:
digitalWrite(segA, SEGMENT_OFF);
digitalWrite(segB, SEGMENT_ON);
digitalWrite(segC, SEGMENT_ON);
digitalWrite(segD, SEGMENT_OFF);
digitalWrite(segE, SEGMENT_ON);
digitalWrite(segF, SEGMENT_ON);
digitalWrite(segG, SEGMENT_ON);
break;
}
}
Am facut un film numit DS3231, DHT11 pe afisaj LED multiplexat comandate de Arduino, penru a vedea cum sunt afisate datele:
Poate pe viitor ma apuc sa fac si eu unul :D.
RăspundețiȘtergerePresupun ca limbajul de programare folosit pt Arduino este C++