La primele teste nu am obtinut rezultate, in sensul ca becul nu se aprinde, desi LED-ul se aprindea slab. Dupa ce am schimbat optocuplorul de comanda (MOC3040/MOC3041) cu MOC3020 si triacul (BT134/BT136)
Schema este cea "clasica" cu precizarile ca eu am folosit la detectorul trecerii prin zero un optocuplor 4N35 si 2 rezistente de 91K (se pot folsit si de 100k) iar puntea redresoare am recuperat-o dintr-o sursa de calculator, iar optocuplorul de comanda este MOC3020
Semnalul de trecere prin zero l-am conectat la terminalul digital D2, iar comanda LED-ului si a MOC-ului la terminalul digital D3 de la Arduino.
AC Voltage dimmer with Zero cross detection
Author: Charith Fernanado http://www.inmojo.com
License: Creative Commons Attribution Share-Alike 3.0 License.
Attach the Zero cross pin of the module to Arduino External Interrupt pin
Select the correct Interrupt # from the below table:
(the Pin numbers are digital pins, NOT physical pins:
digital pin 2 [INT0]=physical pin 4
and digital pin 3 [INT1]= physical pin 5)
Pin | Interrrupt # | Arduino Platform
----------------------------- ----------
2 | 0 | All
3 | 1 | All
18 | 5 | Arduino Mega Only
19 | 4 | Arduino Mega Only
20 | 3 | Arduino Mega Only
21 | 2 | Arduino Mega Only
In the program pin 2 is chosen
*/
int AC_LOAD = 3; // Output to Opto Triac pin
int dimming = 128; // Dimming level (0-128) 0 = ON, 128 = OFF
/* Due to timing problems, the use of ‘0’ can sometimes make the circuit
flicker. It is safer to use a value slightly higher than ‘0’
*/
void setup()
{
pinMode(AC_LOAD, OUTPUT);// Set AC Load pin as output
attachInterrupt(0, zero_crosss_int, RISING);
// Chooses '0' as interrupt for the zero-crossing
}
// the interrupt function must take no parameters and return nothing
void zero_crosss_int()
// function to be fired at the zero crossing to dim the light
{
// Firing angle calculation : 1 full 50Hz wave =1/50=20ms
// Every zerocrossing thus: (50Hz)-> 10ms (1/2 Cycle) For 60Hz => 8.33ms
// 10ms=10000us
// (10000us - 10us) / 128 = 75 (Approx) For 60Hz =>65
int dimtime = (75*dimming); // For 60Hz =>65
delayMicroseconds(dimtime); // Off cycle
digitalWrite(AC_LOAD, HIGH); // triac firing
delayMicroseconds(10); // triac On propogation delay
//(for 60Hz use 8.33)
digitalWrite(AC_LOAD, LOW); // triac Off
}
void loop() {
for (int i=5; i <= 128; i++)
{
dimming=i;
delay(50);
}
}
Am modificat un pic acest prim sketch pentru a avea o crestere, apoi o scaderere a intensitatii luminoase a becului cu incandescenta:
/*
AC Voltage dimmer with Zero cross detection
Author: Charith Fernanado http://www.inmojo.com
License: Creative Commons Attribution Share-Alike 3.0 License.
Attach the Zero cross pin of the module to Arduino External Interrupt pin
Select the correct Interrupt # from the below table:
(the Pin numbers are digital pins, NOT physical pins:
digital pin 2 [INT0]=physical pin 4
and digital pin 3 [INT1]= physical pin 5)
Pin | Interrrupt # | Arduino Platform
----------------------------- ----------
2 | 0 | All
3 | 1 | All
18 | 5 | Arduino Mega Only
19 | 4 | Arduino Mega Only
20 | 3 | Arduino Mega Only
21 | 2 | Arduino Mega Only
In the program pin 2 is chosen
*/
int AC_LOAD = 3; // Output to Opto Triac pin
int dimming = 128; // Dimming level (0-128) 0 = ON, 128 = OFF
/* Due to timing problems, the use of ‘0’ can sometimes make the circuit
flicker. It is safer to use a value slightly higher than ‘0’
*/
void setup()
{
pinMode(AC_LOAD, OUTPUT);// Set AC Load pin as output
attachInterrupt(0, zero_crosss_int, RISING);
// Chooses '0' as interrupt for the zero-crossing
}
// the interrupt function must take no parameters and return nothing
void zero_crosss_int()
// function to be fired at the zero crossing to dim the light
{
// Firing angle calculation : 1 full 50Hz wave =1/50=20ms
// Every zerocrossing thus: (50Hz)-> 10ms (1/2 Cycle) For 60Hz => 8.33ms
// 10ms=10000us
// (10000us - 10us) / 128 = 75 (Approx) For 60Hz =>65
int dimtime = (75*dimming); // For 60Hz =>65
delayMicroseconds(dimtime); // Off cycle
digitalWrite(AC_LOAD, HIGH); // triac firing
delayMicroseconds(10); // triac On propogation delay
//(for 60Hz use 8.33)
digitalWrite(AC_LOAD, LOW); // triac Off
}
void loop() {
for (int i=128; i > 5; i--)
{
dimming=i;
delay(20);
}
dimming=10;
delay(20);
for (int i=5; i < 128; i++)
{
dimming=i;
delay(20);
}
dimming=128;
}
Filmuletul numit ac light dimmer with Arduino (II) prezinta modul de aprindere si stingere al becului:
Sketch-ul adaptat si folosit este:
/*
AC Light Control
Updated by Robert Twomey <rtwomey@u.washington.edu>
Changed zero-crossing detection to look for RISING edge rather
than falling. (originally it was only chopping the negative half
of the AC wave form).
Also changed the dim_check() to turn on the Triac, leaving it on
until the zero_cross_detect() turn's it off.
Adapted from sketch by Ryan McLaughlin <ryanjmclaughlin@gmail.com>
*/
#include <TimerOne.h> // Avaiable from http://www.arduino.cc/ playground/Code/Timer1
volatile int i=0; // Variable to use as a counter
volatile boolean zero_cross=0; // Boolean to store a "switch" to tell us if we have crossed zero
int AC_pin = 3; // Output to Opto Triac
int dim = 0; // Dimming level (0-128) 0 = on, 128 = 0ff
int inc=1; // counting up or down, 1=up, -1=down
int freqStep = 65; // This is the delay-per-brightness step in microseconds.
// It is calculated based on the frequency of your voltage supply (50Hz or 60Hz)
// and the number of brightness steps you want.
//
// The only tricky part is that the chopper circuit chops the AC wave twice per
// cycle, once on the positive half and once at the negative half. This meeans
// the chopping happens at 120Hz for a 60Hz supply or 100Hz for a 50Hz supply.
// To calculate freqStep you divide the length of one full half-wave of the power
// cycle (in microseconds) by the number of brightness steps.
//
// (1000000 uS / 120 Hz) / 128 brightness steps = 65 uS / brightness step
//
// 1000000 us / 120 Hz = 8333 uS, length of one half-wave.
void setup() { // Begin setup
pinMode(AC_pin, OUTPUT); // Set the Triac pin as output
attachInterrupt(0, zero_cross_detect, RISING); // Attach an Interupt to Pin 2 (interupt 0) for Zero Cross Detection
Timer1.initialize(freqStep); // Initialize TimerOne library for the freq we need
Timer1.attachInterrupt(dim_ check, freqStep);
// Use the TimerOne Library to attach an interrupt
// to the function we use to check to see if it is
// the right time to fire the triac. This function
// will now run every freqStep in microseconds.
}
void zero_cross_detect() {
zero_cross = true; // set the boolean to true to tell our dimming function that a zero cross has occured
i=0;
digitalWrite(AC_pin, LOW); // turn off TRIAC (and AC)
}
// Turn on the TRIAC at the appropriate time
void dim_check() {
if(zero_cross == true) {
if(i>=dim) {
digitalWrite(AC_pin, HIGH); // turn on light
i=0; // reset time step counter
zero_cross = false; //reset zero cross detection
}
else {
i++; // increment time step counter
}
}
}
void loop() {
dim+=inc;
if((dim>=128) || (dim<=0))
inc*=-1;
delay(50);
}
/*
AC Light ControlUpdated by Robert Twomey <rtwomey@u.washington.edu>
Changed zero-crossing detection to look for RISING edge rather
than falling. (originally it was only chopping the negative half
of the AC wave form).
Also changed the dim_check() to turn on the Triac, leaving it on
until the zero_cross_detect() turn's it off.
Ryan McLaughlin <ryanjmclaughlin@gmail.com>
The hardware consists of an Triac to act as an A/C switch and
an opto-isolator to give us a zero-crossing reference.
The software uses two interrupts to control dimming of the light.
The first is a hardware interrupt to detect the zero-cross of
the AC sine wave, the second is software based and always running
at 1/128 of the AC wave speed. After the zero-cross is detected
the function check to make sure the proper dimming level has been
reached and the light is turned on mid-wave, only providing
partial current and therefore dimming our AC load.
Thanks to http://www.andrewkilpatrick.org/blog/?page_id=445
and http://www.hoelscher-hi.de/hendrik/english/dimmer.htm
*/
#include <TimerOne.h> // Avaiable from http://www.arduino.cc/playground/Code/Timer1
volatile int i=0; // Variable to use as a counter
volatile boolean zero_cross=0; // Boolean to store a "switch" to tell us if we have crossed zero
int AC_pin = 3; // Output to Opto Triac
int POT_pin = A3; // Pot for testing the dimming
int LED = 11; // LED for testing
int dim = 0; // Dimming level (0-128) 0 = on, 128 = 0ff
int freqStep = 75; // This is the delay-per-brightness step in microseconds.
// It is calculated based on the frequency of your voltage supply (50Hz or 60Hz)
// and the number of brightness steps you want.
//
// The only tricky part is that the chopper circuit chops the AC wave twice per
// cycle, once on the positive half and once at the negative half. This meeans
// the chopping happens at 120Hz for a 60Hz supply or 100Hz for a 50Hz supply.
// To calculate freqStep you divide the length of one full half-wave of the power
// cycle (in microseconds) by the number of brightness steps.
//
// (1000000 uS / 120 Hz) / 128 brightness steps = 65 uS / brightness step
//
// 1000000 us / 120 Hz = 8333 uS, length of one half-wave.
void setup() { // Begin setup
pinMode(AC_pin, OUTPUT); // Set the Triac pin as output
pinMode(LED, OUTPUT); // Set the LED pin as output
attachInterrupt(0, zero_cross_detect, RISING); // Attach an Interupt to Pin 2 (interupt 0) for Zero Cross Detection
Timer1.initialize(freqStep); // Initialize TimerOne library for the freq we need
Timer1.attachInterrupt(dim_check, freqStep);
// Use the TimerOne Library to attach an interrupt
// to the function we use to check to see if it is
// the right time to fire the triac. This function
// will now run every freqStep in microseconds.
}
void zero_cross_detect() {
zero_cross = true; // set the boolean to true to tell our dimming function that a zero cross has occured
i=0;
digitalWrite(AC_pin, LOW);
}
// Turn on the TRIAC at the appropriate time
void dim_check() {
if(zero_cross == true) {
if(i>=dim) {
digitalWrite(AC_pin, HIGH); // turn on light
i=0; // reset time step counter
zero_cross=false; // reset zero cross detection
}
else {
i++; // increment time step counter
}
}
}
void loop() {
dim = analogRead(POT_pin) / 8; // read dimmer value from potentiometer
analogWrite(LED, dim); // write dimmer value to the LED, for debugging
}
Din testele preliminare, Arduino are defecta partea de intrari analogine, inca nu stiu de ce, dar... am pus un buton pe intrarea digitala 4, cu care voi creste si scadea intensitatea luminoasa, folosindu-ma de sketch-ul cu potentiometru de la DXARTS.
Am adaptat sketch-ul incat sa pot folosi butonasul meu fara retinere sa realizez 8 trepte de regaj (LED-ul rosu se aprinde la intensitate luminoasa invers decat becul):
/*
AC Light Control
Updated by Robert Twomey <rtwomey@u.washington.edu>
Changed zero-crossing detection to look for RISING edge rather
than falling. (originally it was only chopping the negative half
of the AC wave form).
Also changed the dim_check() to turn on the Triac, leaving it on
until the zero_cross_detect() turn's it off.
Ryan McLaughlin <ryanjmclaughlin@gmail.com>
The hardware consists of an Triac to act as an A/C switch and
an opto-isolator to give us a zero-crossing reference.
The software uses two interrupts to control dimming of the light.
The first is a hardware interrupt to detect the zero-cross of
the AC sine wave, the second is software based and always running
at 1/128 of the AC wave speed. After the zero-cross is detected
the function check to make sure the proper dimming level has been
reached and the light is turned on mid-wave, only providing
partial current and therefore dimming our AC load.
Thanks to http://www.andrewkilpatrick.org/blog/?page_id=445
and http://www.hoelscher-hi.de/hendrik/english/dimmer.htm
adapted skech by niq_ro from http://www.nicuflorica.blogspot.com &
http://www.tehnic.go.ro
*/
#include <TimerOne.h> // Avaiable from http://www.arduino.cc/playground/Code/Timer1
volatile int i=0; // Variable to use as a counter
volatile boolean zero_cross=0; // Boolean to store a "switch" to tell us if we have crossed zero
int AC_pin = 3; // Output to Opto Triac
int buton1 = 4; // first button at pin 4
int LED = 11; // LED for testing
int dim = 128; // Dimming level (0-128) 0 = on, 128 = 0ff
int pas = 16; // step for count;
int freqStep = 75; // This is the delay-per-brightness step in microseconds.
// It is calculated based on the frequency of your voltage supply (50Hz or 60Hz)
// and the number of brightness steps you want.
//
// The only tricky part is that the chopper circuit chops the AC wave twice per
// cycle, once on the positive half and once at the negative half. This meeans
// the chopping happens at 120Hz for a 60Hz supply or 100Hz for a 50Hz supply.
// To calculate freqStep you divide the length of one full half-wave of the power
// cycle (in microseconds) by the number of brightness steps.
//
// (1000000 uS / 120 Hz) / 128 brightness steps = 65 uS / brightness step
//
// 1000000 us / 120 Hz = 8333 uS, length of one half-wave.
void setup() { // Begin setup
pinMode(buton1, INPUT); // set buton1 pin as input
pinMode(AC_pin, OUTPUT); // Set the Triac pin as output
pinMode(LED, OUTPUT); // Set the LED pin as output
attachInterrupt(0, zero_cross_detect, RISING); // Attach an Interupt to Pin 2 (interupt 0) for Zero Cross Detection
Timer1.initialize(freqStep); // Initialize TimerOne library for the freq we need
Timer1.attachInterrupt(dim_check, freqStep);
// Use the TimerOne Library to attach an interrupt
// to the function we use to check to see if it is
// the right time to fire the triac. This function
// will now run every freqStep in microseconds.
}
void zero_cross_detect() {
zero_cross = true; // set the boolean to true to tell our dimming function that a zero cross has occured
i=0;
digitalWrite(AC_pin, LOW);
}
// Turn on the TRIAC at the appropriate time
void dim_check() {
if(zero_cross == true) {
if(i>=dim) {
digitalWrite(AC_pin, HIGH); // turn on light
i=0; // reset time step counter
zero_cross=false; // reset zero cross detection
}
else {
i++; // increment time step counter
}
}
}
void loop() {
if (digitalRead(buton1) == LOW)
{
if (dim>125 || dim<15)
{
pas = - pas;
}
dim = dim + pas;
while (digitalRead(buton1) == LOW) { }
delay(10); // waiting little bit...
}
analogWrite(LED, dim); // write dimmer value to the LED, for debugging
delay (100);
}
Filmuletul demonstrativ se numeste ac light dimmer with Arduino (IV):
Filmuletul, care prezinta modul de functionare, se numeste ac light dimmer with Arduino (V):
28.03.2013
Un alt film (tot cu 4 trepte de reglaj) se numeste ac light dimmer with Arduino (VI):
int pas = 42; // step for count;
iar pentru 2 trepte de iluminare (0-50%-100%-50%-0-...)
int pas = 64; // step for count;
Pentru varianta cu 3 trepte de reglaj al intensitatii becului, an facut poze cu cele 4 stari:
- bec stins:
- bec la 33%:
- bec la 67%:
- bec la maxim:
si un filmulet numit ac light dimmer with Arduino (VII):
- bec stins:
- bec la 50%:
- bec la maxim:
iar filmul cu functionarea in cele 2 trepte de intensitate se numeste ac light dimmer with Arduino (VIII):
salut, nu se aprinde deloc am incarcat mai multe sketch-uri, iar la sketch-ul DXARTS - AC DIMMER CIRCUIT se aprinde doar in perioada de maxim. Ce am gresit?
RăspundețiȘtergereNu am facut inventii, am pus: BT134, moc3041, 4n35, rezistentele care limiteaza curentul inainte de punte sun 85K nu am avut altele. Restul este lafel ca la tine
multumesc
salut, tot eu.
RăspundețiȘtergereGata, functioneaza !!! Am schimbat MOC3041 (cu detector de trecere prin 0) cu un MOC3021 (fara detector de trecere prin 0)
so for the code up down button also work with moc3041? because I'm using moc3021 the light only will glow 100%
Ștergere